If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+6y-20=0
a = 8; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·8·(-20)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-26}{2*8}=\frac{-32}{16} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+26}{2*8}=\frac{20}{16} =1+1/4 $
| 7x+13=2x+32 | | 15x100=1500 | | 6x^2-43.5=250 | | -7(x+4)=-5x-8 | | -8r=-r-84 | | 11=-9a+6a+5 | | -7(z+2)-17=18 | | -24=8x-5(3+x) | | 48=4(4+c) | | 4p+6p=40 | | 36=9(t-1) | | 39=9(t-1) | | 25=16-3(b-2) | | 4=2(b+9)+6 | | 2(u-12)-13=-31 | | 2(u-12)-13=31 | | -6(v-7)=66 | | 8(d-2)=-56 | | 6v+9v=15 | | 5v+19=69 | | 8=-4(s+7) | | -18=-3(p+4) | | 6t+3t=63 | | -91=-8p-19 | | 35=-7(z-3) | | 5=3x+5/2 | | 4-x3=38 | | 3x+5=7x-7= | | -7-3y+2=8y-8 | | 4(x-3+2x=2(3x+6) | | 3x+2=11+3x-5 | | 0.27x-1.4=0.32-2 |